
CONSORTIUM

France	CEA-INES / TOTAL AYMING
Germany	VON ARDENNE / ISFH FRAUNHOFER ISE
Netherlands	MECO (BESI)
Slovenia	UNIVERSITY OF LJUBLJANA
Switzerland	CESM / MEYER BURGER EPFL
Hungary	ECOSOLIFER
United Kingdom	ERM

To reach these ambitious objectives, the DISC consortium consists of 13 partners from industrial actors and research institutes from 7 European countries.

Experienced industrial actors

Research Institutes and Universities

(Pfl ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

Other

uète ĝ

CONTACT

 Project coordinator ISFH - Prof. Robby Peibst peibst@isfh.de +49 (0) 5151 999 313

Project Management Office

AYMING – Etienne Macron & Julie Chupin emacron@ayming.com / jchupin@ayming.com +33 4 72 35 88 53

This project received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant Agreement N°727529

This project received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant Agreement N°727529

Double side contact cells with innovative carrier-selective contacts

SCOPE & OBJECTIVES

The DISC project aims to develop key technologies for the next generation of high-performance photovoltaic (PV) solar cells and modules, allowing ultra-low solar electricity costs with minimum environmental impact. Indeed, a life cycle approach applied in DISC prevents the shifting of environmental or social burdens between impact categories. Technologically, the approach of the DISC project combines today's simple, non-patterned device architecture for double-side contacted Si solar cells with innovative carrier selective contacts.

In DISC, a unique consortium of experienced industrial actors will collaborate with a set of institutes with demonstrated record devices and worldwide exceptional experience in the R&D field of carrier selective contacts. The high efficient PV modules developed in DISC are predestined for rooftop installations, i.e., neutral with respect to land use aspects.

DISC has a chance to contribute towards mitigating the impacts of climate change, improving energy access and bringing Europe back at the forefront of solar cell science, technology and manufacturing.

PROJECT METHODOLOGY

The research partners of the DISC consortium are planning to work in a continuous interaction for the whole duration of the project in order to identify high potential components which might bring significant

DEVELOPMENT

CSJ Formation (EPFL)

High performance cells and modules (CSEM)

Transparent conductive oxides (INES)

Metallization and interconnection (F-ISE)

Increased viability

and attractiveness of the PV systems

BENEFITS

More competitive EU PV scientific and industrial stakeholders

FOCUS & TARGETS

TECHNO-LOGICAL

 Double-side contacted Silicon solar cells with carrier selective junctions and optimised metallisation and TCO

• Efficiencies >25.5% on large area cell (>100 cm²) and >22% at module level with area <1.65 m²

ECONO-MICAL

- Lower Levelized Costs of Electricity between 0.04 0.07€/kWh
- ments: 0.40€/Wp of production cost on module level and a

SUSTAINA- Increased efficiency, reliability and durability BILITY

advancement with respect to carrier selective junctions (CSJ), transparent conductive oxides (TCO), metallization subjects and final devices.

